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Individuals are typically not randomly distributed in space; consequently ecological and evolutionary theory depends heavily on

understanding the spatial structure of populations. The central challenge of landscape genetics is therefore to link spatial hetero-

geneity of environments to population genetic structure. Here, we employ multivariate spatial analyses to identify environmentally

induced genetic structures in a single breeding population of 1174 great tits Parus major genotyped at 4701 single-nucleotide poly-

morphism (SNP) loci. Despite the small spatial scale of the study relative to natal dispersal, we found multiple axes of genetic

structure. We built distance-based Moran’s eigenvector maps to identify axes of pure spatial variation, which we used for spatial

correction of regressions between SNPs and various external traits known to be related to fitness components (avian malaria

infection risk, local density of conspecifics, oak tree density, and altitude). We found clear evidence of fine-scale genetic structure,

with 21, seven, and nine significant SNPs, respectively, associated with infection risk by two species of avian malaria (Plasmodium

circumflexum and P. relictum) and local conspecific density. Such fine-scale genetic structure relative to dispersal capabilities sug-

gests ecological and evolutionary mechanisms maintain within-population genetic diversity in this population with the potential

to drive microevolutionary change.

KEY WORDS: Genome-environment association study, landscape genetics, Moran’s eigenvector maps, Parus major, plasmodium,

SNPs.

Individuals are typically not randomly distributed in space; rather,

they aggregate in patches or groups, or are distributed along

gradients in spatially variable physical and social environments.

This spatial structure is key to much of ecological and evolu-

tionary theory including social evolution, mate choice, epidemi-

∗These authors contributed equally to this work.

ology, population ecology, the maintenance of genetic diversity,

adaptation, and speciation (Gaston 2003; Coyne and Orr 2004;

Fortin and Dale 2005; Bourke 2011; Nosil 2012). Individuals at

different resource patches are less likely to meet and thus un-

likely to be selected as mates or to transfer disease or parasites,

whereas individuals within patches, or in closer spatial proximity,

are more likely to interact with each other, and hence influence
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selection on social properties. Divergent selection and nonrandom

gene flow in space lead to population differentiation, can result

in local adaptation (Bohonak 1999; Lenormand 2002; Coyne

and Orr 2004), and in a subset of cases can lead to speciation

(Bohonak 1999; Coyne and Orr 2004). Clearly, spatial hetero-

geneity of environments plays a general and fundamental role in

many ecological and evolutionary processes. Within this context,

the central challenge of landscape genetics is to address the role

of spatial heterogeneity of environments as contributing factors to

neutral and adaptive components of population genetic structure

from evolutionary and ecological perspectives.

Within populations, divergent selection in space may con-

tribute to the maintenance of genetic diversity (Hargeby et al.

2004; Postma and van Noordwijk 2005) and is crucial for adap-

tive responses to environmental changes. Divergent selection can

even lead to reproductive barriers if immigration to new envi-

ronments is selected against (Nosil et al. 2005). When selection

pressures are strong enough, divergent selection should be ap-

parent from correlations between genetic polymorphisms and the

environment. One particular difficulty in identifying these corre-

lations is teasing apart and controlling for the relative roles of

various sources of spatial variation.

Spatial genetic structures may be generated by two nonexclu-

sive types of process. The first is spatial autocorrelation (sensu

stricto; Sokal and Oden 1978; Fortin and Dale 2005; Legendre and

Legendre 2012). In this case, spatial structure emerges as a result

of endogenous biotic processes, such as genetic drift, inherent dis-

persal tendencies (i.e., isolation-by-distance), kin structure, and

shared population histories. The second involves induced spatial

dependence (Fortin and Dale 2005; Legendre and Legendre 2012).

Here, spatial genetic structure is induced by relationships with

external spatially structured explanatory variables; for example,

when a population responds to a spatially structured environmen-

tal process, either by selection, local adaptation, or differential

dispersal. Landscape genetics studies have typically been most

interested in understanding the consequences, in terms of mi-

croevolutionary processes and gene flow, of species interactions

with their environment (i.e., induced spatial dependence), while

controlling for spatial autocorrelation as a nuisance variable. We

suggest that very often both processes leading to spatial depen-

dence are biologically interesting and our approach here models

both explicitly.

In this study, we aimed to identify sources of environmentally

based selection causing spatial genetic structure at a fine-spatial

scale relative to dispersal. Specifically, we test for evidence of

microevolutionary responses to environmental traits which are

known to affect fitness and which vary over space within an

intensively studied population of great tits (Parus major). The

environmental traits we analyze are the risk of infection with

malaria, local density of conspecifics, the local density of oak

trees Quercus spp. (a key food plant for larvae that are an impor-

tant component of the diet of nestling great tits; Gosler 1993), and

altitude. In each case, there is evidence that fitness is correlated

with these environmental traits (see section Materials and Meth-

ods) and hence that the environmental trait has the potential to act

as a spatially variable source of selection.

Numerous approaches for controlling for spatial autocorrela-

tion have been proposed for landscape genetics. These include (1)

partialling out the effects of isolation-by-distance and assessing

whether the remaining variation in the data are related to landscape

features (e.g., Cushman et al. 2006); (2) incorporating isolation-

by-distance into measures of landscape resistance and proceeding

with standard model fitting (e.g., Garroway et al. 2011); (3) using

mixed effects models to account for lack of independence (e.g.,

van Strien et al. 2012); (4) fitting gravity models to networks

of population genetic connectivity (e.g., Murphy et al. 2010); and

(5) fitting models with multiple regression on matrices (e.g., Dyer

et al. 2010). Here, we take a different approach (see Manel et al.

2010, 2012; Lasky et al. 2012). Rather than treating space as a

nuisance variable to be controlled for, we treat spatial patterns in

the data as indicative of often unmeasured processes of dispersal,

drift, and historic influences on population structure and incorpo-

rate space explicitly into our models (McIntire and Fajardo 2009;

Manel et al. 2010, 2012; Dray et al. 2012). To do this we cal-

culate Moran’s eigenvector maps, which are eigenvectors from a

truncated spatial distance network that is built from the spatial

coordinates of sample sites (Borcard and Legendre 2002; Dray

et al. 2006). Moran’s eigenvector maps summarize spatial pat-

terns across all scales as orthogonal vectors of a distance matrix.

They can be incorporated into regression analyses as spatially

structured proxy variables accounting for spatial autocorrelation-

related processes, such as isolation-by-distance, shared histories,

and kin structure (Manel et al. 2010, 2012; Lasky et al. 2012).

Thus, our goal was to identify instances of within-population

selection on genetic variants (in this case single-nucleotide

polymorphisms [SNPs], derived from a large-scale genotyping

project) associated with spatially structured environmental vari-

ables of differing spatial and temporal predictability. We expected

that the effects of environmentally induced habitat or natural se-

lection on spatial genetic structure would be most apparent for

those variables that are spatially predictable over time.

Materials and Methods
STUDY SYSTEM

This study was conducted in the great tit population in Wytham

Woods, a 385 ha mixed deciduous woodland close to Oxford,

U.K. (51◦46′N, 1◦20′W). The study site contains 1020 nest boxes

of which 250–450 are used annually for breeding by great tits.
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As part of a long-term monitoring project, all birds are ringed

for individual identification and breeding performance has been

recorded systematically since the early 1960s (Lack 1964). In

this study we analyzed the relationship between spatially variable

environmental gradients and genetic variation in 1174 individual

birds that bred in the study population in 2008 or 2009. Be-

cause about half of the breeding birds survive until the next year

(Clobert et al. 1988; Bouwhuis et al. 2012), many individuals

were present in both years. As breeding location, we took the

earliest recorded breeding location for those individuals that were

observed in >1 year. This is a good proxy for all years because,

after natal dispersal, individuals tend to breed close to the loca-

tion they bred before (e.g., 61% of breeding birds move <100 m

between years, 87% move <200 m and 94% move <300 m; Har-

vey et al. 1979). We analyzed only breeding adults because these

birds had a well-defined spatial location, and have potentially

undergone extensive selection by environmental variables.

EXTERNAL VARIABLES

We studied the effects of three different environmental variables:

(1) malaria infection risk; (2) the density of oak trees Quercus spp.;

(3) altitude; and (4) an endogenous property of the population,

the local density of conspecifics.

Avian malaria in tits
The spatial distribution, epidemiology, and effects of avian

malaria (Plasmodium spp.) on great and blue tits (Cyanistes

caeruleus) have been well studied in this population (Wood

et al. 2007; Knowles et al. 2010a, b, 2011; Lachish et al. 2011a, b,

2013). Two Plasmodium species are common in the study area

(P. circumflexum and P. relictum) and differ in important aspects

with regard to their spatial epidemiology and effects on hosts.

Plasmodium circumflexum has pronounced, temporally stable,

fine-scale spatial structure, with more than 10-fold relative in-

crease in infection risk over space in the study population, whereas

P. relictum is much less predictably distributed in space and time

and with less variation in relative infection risk in space (Knowles

et al. 2011; Lachish et al. 2013). Plasmodium circumflexum re-

duces survival in blue tits to a much greater extent than P. relic-

tum (Lachish et al. 2011a) suggesting, together with pronounced

spatial structure, the opportunity for parasite-mediated selection

driven by P. circumflexum, but less so with P. relictum (Lachish

et al. 2013). Similarly, reduced survival is observed in great tits

infected by P. circumflexum but not P. relictum (I. Sepil et al.,

unpubl. ms.). In 2008 and 2009, 85% of breeding great tits (2008:

643 of 756; 2009: 472 of 556) were screened for malaria infec-

tion (P. circumflexum and P. relictum) as described in Lachish

et al. (2013). We calculated infection risk for individuals for each

malaria species as the proportion of infected conspecifics within

a 500 m radius (500 m gave qualitatively similar results to 100 m

and 250 m radii) around breeding location for both years com-

bined (Lachish et al. 2013).

Oak tree density
Oak tree (Quercus robur and Q. petraea) density is an impor-

tant indicator of breeding season territory quality for great tits in

this population (Wilkin et al. 2009; Wilkin and Sheldon 2009).

Caterpillars (e.g., winter moth Operophtera brumata, and green

tortrix Tortrix viridana) are a major food resource fed to nestlings

(Gosler 1993) and are most abundant on freshly emerged oak

leaves. The density of oak trees is temporally predictable and so,

we might expect the opportunity for selection associated with ex-

ploiting this resource. For the density of the oak trees, we used

the number of oak trees within a radius of 50 m (approximate

breeding territory size) of every breeding location as described

and calculated by Wilkin et al. (2007), but based on mapping of

oak tree locations in 2010.

Local conspecific density
Nestbox spacing in the Wytham Woods study varies between dif-

ferent sections of the woodland, with a range from <1 ha−1 to >6

ha−1; this variable spacing results in variation in local conspecific

density. Clutch size, fledging mass, and the number of offspring

recruited to the population per breeding attempt are all positively

related to territory size, a measure of local conspecific density,

in the study population (Wilkin et al. 2006; Wilkin and Sheldon

2009). Although population size fluctuates annually, it has tended

to increase over the past three decades (e.g., Garant et al. 2004).

However, relative local conspecific density has been consistent

over the longer term, owing to the fixed position of nestboxes.

Local conspecific density was calculated for each individual as

the number of conspecific breeding pairs per hectare of forest

within a 500 m radius (for consistency with the malaria infec-

tion risk measures) of every breeding location. Local conspecific

density was calculated for 10 consecutive years (2001–2011) and

averaged over those years.

Altitude
Altitude varies by 106 m within the study site, and while this dif-

ference may seem relatively small, it is associated with predictable

differences in vegetation phenology. Probably as a consequence,

clutches are laid later at higher altitudes. In addition, fledglings

are lighter as altitude increases in the study area (Wilkin and

Sheldon 2009). A further strong environmental effect related to

altitude concerns soil calcium concentration: the study site con-

sists of two Corallian limestone hilltops surrounded by layers

of sand and clay. As a consequence, calcium concentration in the

soil varies 300-fold along the altitudinal gradient, and there is evi-

dence that at low calcium concentrations, calcium may be limiting

with respect to reproductive output (Wilkin et al. 2009). Altitude
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and the environmental conditions associated with it are spatially

structured and predictable. Altitude for every breeding location

was calculated from a 50-m resolution Land Form PROFILE

Digital-Terrain-Model dataset provided by Ordnance Survey as

described and calculated by Wilkin et al. (2007).

GENOTYPES

A SNP chip with 9193 markers was developed based on transcrip-

tome sequencing of great tits from the Wytham Woods popula-

tion and genomic sequencing of great tits from populations in the

Netherlands (see van Bers et al. 2010; Santure et al. 2011; van

Bers et al. 2012 for details). Of those 9193 markers, 7032 passed

quality control (using the criteria genotyping frequency >95%,

minor allele frequency >0.05, and Hardy–Weinberg equilibrium

P > 0.001, calculated using PLINK v1.06; Purcell et al. 2007)

and 4878 were incorporated into the linkage map for our popula-

tion. Because we can expect, given sex-biased dispersal distances,

divergent gene flow for alleles located on the Z-chromosome rel-

ative to alleles on the autosomes (Mank et al. 2010), we only

analyzed the 4701 SNPs located on the autosomes. These mark-

ers were used to genotype 2652 great tits (van Bers et al. 2012), of

which 1174 formed the large majority of the breeding population

in 2008–2009 and thus formed the basis of this study.

SPATIAL ANALYSES

We examined the spatial structure of our environmental data with

Moran’s I correlograms and genetic data with a Mantel correl-

ogram. We used spatial principal components analysis (sPCA),

a spatially explicit multivariate method that describes allele fre-

quency variation, to search for discrete genetic clusters, allele fre-

quency gradients, or both (Jombart et al. 2008). sPCA optimizes

the product of the variance in the data and Moran’s I (Moran

1948, 1950) to build synthetic components that summarize spa-

tial patterns of allele frequencies (Jombart et al. 2008). Global

(positive eigenvalues) and local (negative eigenvalues) eigenvec-

tors are built. Global scores can be used to identify distinct genetic

clusters and spatial clines. Local scores can be used to detect dif-

ferentiation between neighboring sites. To calculate Moran’s I, we

needed to define neighboring nest sites. We did this by building

a neighbor network that linked all nestboxes within the minimum

distance that would keep the network connected (i.e., the longest

edge in a minimum spanning tree); that is, all nestboxes within

296 m of each other were linked in our case (mean number of

neighbors was 61). We tested the null hypothesis that the raw data

were distributed randomly on the neighbor network to indicate

which structures, global or local, should be interpreted (Jombart

et al. 2008). Nonrandom distributions indicate that the scores dis-

play some spatial structure, but does not suggest how many axes

are important; the null distributions were determined via permu-

tation (n = 999). Local structures are more likely to be related to

behavioral processes (e.g., territoriality, or spatial disassortment

via social interactions) than spatially predictable environmental

variation, so here we focus on global structures. sPCA makes

no assumptions regarding Hardy–Weinberg or linkage equilib-

rium. sPCA analysis was calculated using the adegenet package

(Jombart 2008) and visualized using the ade4 (Dray and Dufour

2007) package in R (The R Core Development Team 2012).

Population structure can be a result of individual responses

to spatially structured environmental variables (induced spatial

dependence), population dynamics and history (spatial autocor-

relation), or both. Several methods have been developed to incor-

porate space as a predictor in multivariate analyses (see Legendre

and Legendre 2012 for an overview). Prominent among these

are (1) the inclusion of spatial coordinates directly into mod-

els (trend surface analyses) and (2) the construction of distance-

based Moran’s eigenvector maps (dbMEMs), which model spatial

structure at multiple scales independently based upon eigenvec-

tor decomposition of distance matrices. In trend surface analy-

sis, polynomial transformations of x-y coordinates of increasing

power increase the local flexibility in the spatial trends that can be

modeled; however, they also increase the number of parameters

needed to model a spatial trend, and so in practice, trend surface

analysis is constrained to identify only broad spatial patterns, and

parameters are highly correlated. In contrast, dbMEMs are vari-

ables that represent spatial structures by drawing eigenvectors

through a distance matrix calculated from the spatial configura-

tion of samples. They summarize spatial structures at decreasing

scales. Thus, dbMEMs serve to identify and quantify spatial varia-

tion in response data due to spatial autocorrelation (Legendre and

Legendre 2012). dbMEMs (Dray et al. 2006) were first developed

as principal coordinates (PCoA) of neighbor matrices (Borcard

and Legendre 2002) and generalized by Dray et al. (2006). They

are called Moran’s eigenvector maps because the eigenvalues are

equal to Moran’s I coefficients of the neighbor network multiplied

by a constant (Dray et al. 2006). Moran’s I is directly analogous to

Malecot’s estimator of spatial correlations among gene frequen-

cies (Malecot 1955; Epperson 2005) and has been demonstrated to

accurately describe processes leading to neutral variation in gene

flow and frequencies (e.g., Sokal and Oden 1978; Epperson 2005).

We used dbMEMs to generate independent spatial variables for

inclusion in a genome-environment association study (GEAS)

aiming to identify relationships between alleles, space, and the en-

vironment. Conceptually, these dbMEM variables can be thought

of as independent vectors summarizing the spatial structure asso-

ciated with the neighborhood network (the distance matrix) across

scales. They are used as estimates of the variation in spatial struc-

ture of the SNPs due entirely to spatial autocorrelation-related

processes (Peres-Neto and Legendre 2010).

To calculate dbMEMs we (1) computed a distance matrix

from the spatial coordinates of all genotyped individuals, (2) chose
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a threshold distance to truncate the geographic distances, and (3)

computed PCoA of the truncated distance matrix. The resulting

dbMEMs were models of distance relationships among breeding

location and were used as explanatory variables to model spatial

processes. We used the same neighbor network as we used in

the sPCA as our truncated distance matrix. Positive eigenvalues

for dbMEMs correspond to the Euclidean representation of the

neighbor network, are orthogonal by definition, and thus can be

included in regression analyses as spatial predictors (Borcard and

Legendre 2002; Dray et al. 2006). As with the sPCA, positive

eigenvalues describe global structures and negative eigenvalues

describe local structures. Here too it seems unlikely that local

structures will be related to environmental processes, so we only

examined global dbMEMs. Not all dbMEMs will be related to

genetic structure; we identified the important dbMEMs related to

genetic structure following Blanchet et al. (2008). We first tested

for a relationship between the allele frequency data and all global

dbMEMs with a redundancy analysis. If there was a relationship,

we used forward selection with a double stopping criterion such

that variables that increased the α above 0.05 (arbitrarily chosen)

or raised the adjusted R2 above that of the global model were

not retained. We differed from Blanchet et al. (2008), in that we

used χ2-tests rather than F-tests. Simulations have shown that

this approach corrects for increased type 1 errors and inflated

R2 values typical of forward selection based only upon an alpha

stopping rule (Blanchet et al. 2008). dbMEM eigenvalues describe

spatial variation from broad (largest eigenvalues) to fine (smallest

eigenvalue) scales. dbMEMs were calculated with the PCNM

package (Legendre et al. 2012) for R (R Core Development Team

2012). Detailed descriptions of this approach can be found in

Legendre and Legendre (2012) and example R code in Borcard

et al. (2011).

GEAS

We compared the SNPs with the environmental traits by perform-

ing SNP by SNP generalized linear regressions on each trait. In the

nonspatial GEAS, we used each SNP as a response variable and

environmental traits and local conspecific density as explanatory

variables. In the spatial GEAS, we added significant dbMEM spa-

tial variables as covariates to the nonspatial GEAS. Plasmodium

circumflexum and P. relictum infection risk were normalized by

logit transformation and local conspecific density was normalized

by a logarithmic transformation. All regressions had a Gaussian

error distribution except for the oak tree density that had a Poisson

error distribution and log link. To correct for multiple testing, we

used the Bonferroni correction that set the significance level α at

0.05/4701 = 0.00001063, so −log10(α) = 4.973. All calculations

were performed in R 2.15.0 (R Core Development Team 2012).

We compared the results of the GEAS to more standard

approaches in population genetics in which we used the social

pedigree to correct for relatedness (Thompson and Shaw 1990;

Amin et al. 2007; Aulchenko et al. 2007a) and genomic control to

correct for population stratification (Amin et al. 2007) by using

GenAbel (Aulchenko et al. 2007b)—see Figure S1. Here, to be

consistent with these other approaches, we treated the environ-

mental variables and population density as response variables and

SNP genotypes as explanatory variables. Conceptually, this dif-

fers in that it suggests that genotypes select the environment. The

results of the pedigree models did not differ from the GEAS, but

when genomic control was introduced to the models all signifi-

cant SNPs disappeared. Genomic control corrects for population

structure regardless of its origin (Devlin and Roeder 1999), and

hence will have the effect of removing population stratification

originating from spatial structure, which is the key phenomenon

of interest in this study. In the main body of the MS, we will only

present the results of the GEAS.

Results
General details of the SNP genotyping results can be found in

van Bers et al. (2012). There were varying degrees of spatial cor-

relation in the molecular and environmental data (Fig. 1). Allele

frequencies were positively correlated below distances of approx-

imately 700 m and became negatively correlated at distances over

about 1500 m, suggesting that individuals living less than 700 m

apart were genetically more similar than others, whereas indi-

viduals living more than 1500 m apart were genetically more

dissimilar. Both strains of malaria and oak tree density were also

spatially correlated across the study area, but there were no strong

patterns of spatial autocorrelation for local conspecific density

and altitude (Fig. 1).

Spatial principal components analysis (sPCA) suggested that

global axes should be further interpreted (global P < 0.01;

Figs. 2, S2). The first global axis showed a clear cline in allele fre-

quencies from southeast to northwest (Fig. 2B). The second global

axis showed a less pronounced north–south cline, but differenti-

ated a southern “peninsula” part of the population from the rest

(Fig. 2C); the third global axis differentiated the western-most

portion of Wytham Woods from the rest of the wood (Fig. 2D).

There was no evidence for discrete genetic clusters.

We identified 201 positive dbMEM variables. Of these, 169

had significant Moran’s I values ranging from fine to broad spa-

tial scales suggesting that the redundancy analysis could model

all spatial scales (e.g., from local family structure and shared an-

cestry to broad-scale patterns, such as dispersal). The redundancy

analysis suggested that there was a weak relationship between the

allele frequencies and these dbMEM variables (adj R2 = 0.057,

P < 0.005) and there was no evidence of residual spatial variation

(Mantel test: nperm = 999, r = −0.025, P = 0.888); thus, we
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Figure 1. Moran’s I correlograms illustrating the spatial patterns in variables for (A) Plasmodium circumflexum risk, (B) P. relictum risk,

(C) altitude, (D) oak tree density at nest sites, (E) local conspecific density and (F) a Mantel correlograms of allele frequencies of great tits

in Wytham Woods, Oxford, U.K. Morans’s I standard errors are calculated by randomization. Significant correlation at distance classes

for Mantel correlograms is indicated by filled squares.

continued with the forward variable selection. We retained the

first, second, third, fifth, and sixth dbMEMs (adj R2 = 0.041,

P < 0.005) for inclusion as spatial predictors in the GEAS. That

these are five of the six largest eigenvalues indicates that allele

frequencies are structured at the broadest spatial scales of our

study site with no detectable signatures at mid to fine scales ap-

parent in the data. By including these variables in our models,

we estimate and account for the effects of spatial autocorrelation-

related processes (e.g., kin structure and isolation-by-distance).

Combinations of dbMEMs were related to each of the environ-

mental variables as follows: (1) P. circumflexum infection risk was

positively related to dbMEMs 1, 2, and 6 and negatively related

to dbMEM 5; (2) P. relictum infection risk was positively related

to dbMEM 5 and negatively related to dbMEM 6; (3) altitude

was negatively related to dbMEM 6; (4) local conspecific density

was negatively related to dbMEM 1 and positively related to db-

MEM 5; (5) oak tree density was negatively related to dbMEM

5 and positively related to dbMEM 6. dbMEM 3 was not related

to any of our chosen environmental variables and so is likely to

relate to some other unmeasured spatial environmental variables

that influence genetic structure and was included in the spatial

GEAS.

The spatially explicit GEAS suggested that P. circumflexum

infection risk, P. relictum infection risk, and local conspecific

density were significantly explained by allelic variation at 21, 7,

and 9 SNPs, respectively (Fig. 3; see Fig. S3 for the locations
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Figure 2. The (A) eigenvalues of spatial principal components analysis of allele frequencies of great tits breeding in Wytham Woods,

Oxford, U.K. and (B) scores from the first, (C) second, and (D) third global eigenvectors plotted at nest box sites throughout the wood

visualizing the spatial genetic structure of breeding birds in the population.

of those SNPs on the genome); nonspatial GEAS suggested 24,

10, and 11 significant SNPs, respectively (Fig. 3). All impor-

tant dbMEMs for explaining spatial variation in environmental

variables remained significant when the individual SNPs were

added to the model in the spatial GEAS; however, after the spatial

dbMEM variables were included eight SNPs lost significance.

Those SNPs that lost significance in the presence of dbMEMs

are likely to have been significant due to spatial autocorrelation,

and not through environmentally induced spatial dependence. As

both the SNPs identified as being putatively under selection in

the spatial GEAS and the dbMEMs maintained significance, their

spatial structure is explained by a combination of environmentally

induced spatial structure and spatial autocorrelation.

There were strong and significant correlations between the

parameter estimates of the spatial GEAS across all SNPs for

P. circumflexum and P. relictum infection risk (r = −0.89,

N = 4701, P < 0.001), P. circumflexum infection risk and lo-

cal conspecific density (r = −0.66, N = 4701, P < 0.001),

P. relictum infection risk and local conspecific density (r = 0.61,

N = 4701, P < 0.001), and local conspecific density and altitude

(r = −0.66, N = 4701, P < 0.001), which indicates that SNPs

correlating strongly with one trait tended to correlate strongly

with both other traits as well (see Fig. S4, all other correlations

were significant as well, but r < 0.5). This might originate from

the correlations between some of the environmental traits (P. cir-

cumflexum and P. relictum infection risk, r = −0.82, N = 1174,

P < 0.001; P. circumflexum infection risk and local conspecific

density, r = −0.45, N = 1174, P < 0.001; P. relictum infec-

tion risk and local conspecific density, r = 0.39, N = 1174,

P < 0.001; and local conspecific density and altitude r = −0.60,

N = 1174, P < 0.001; see Fig. S4). It is possible that space is

an important underlying factor contributing to the correlations. If

so, we may have been able to account for and remove the spatial

component of the correlations in a similar manner to the spatial

GEAS with dbMEMs. Thus, as a post hoc analysis, we identi-

fied the dbMEMs important for explaining the spatial structure

of these three variables. There were 29 important dbMEMS for

P. relictum (R2 = 0.15), 28 for P. circuimflexum (R2 = 0.16),

and 30 for local conspecific density (R2 = 0.14). The malaria

strains shared 20 dbMEMs and nine of these were common to

all three variables suggesting that shared spatial processes ex-

plained some of the correlation among environmental variables.

We regressed these nine shared dbMEMs on the environmen-

tal variables and local conspecific density independently to ac-

count for the shared spatial structure and investigated correlations

among residuals. In each case considerable correlations remained

suggesting that common underlying spatial patterns were not

solely responsible for the correlation among these variables. We

therefore cannot draw firm conclusions regarding which of these

three variables affected the genetic structure solely from these

results.

Discussion
We used a high-density SNP genotype dataset, applied to a sin-

gle population of passerine birds, to explore associations between
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Figure 3. The (A) P values and (B) parameter estimates for the genome-environment association studies (GEASs) between single-

nucleotide polymorphisms (SNPs) and various environmental traits for great tits breeding in Wytham Woods, Oxford, U.K. Red dots are

correlations that were not corrected for space, whereas blue dots are spatial corrected correlations. SNPs that were significant (either

for the nonspatial or the spatial models, or both) are indicated by a line connecting the dots representing the same SNP in both the

nonspatial and the spatial models. The dashed line in (A) represents the Bonferroni-corrected significance level. In (B) all but the parameter

estimations for the oak tree density were standardized for graphical purposes.

genotypes, space, and the environment. Mantel correlograms and

sPCA analysis suggested that there was some spatial genetic

structure within the study population of great tits. Allele fre-

quencies were weakly but positively correlated at distances up

to approximately 700 m and weakly negatively correlated at dis-

tances greater than 1500 m. This pattern is most likely to result

from restricted natal dispersal of birds that recruit to the breed-

ing population at this site, which have a median natal dispersal

distance of 528 m and 788 m for males and females, respectively

(Szulkin and Sheldon 2008). sPCA suggested that there were im-

portant spatial clines in allele frequencies, the most dominant of

which was aligned on a southeast–northwest axis. Accounting for
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spatial structure with dbMEMs, we found evidence for fine-scale

environmentally induced genetic structure with respect to the risk

of infection by two malaria species (P. circumflexum and P. re-

lictum) and local conspecific density, but not for oak tree density

at breeding sites or altitude. SNPs at 21 (0.004% of loci tested),

seven (0.001% of loci), and nine (0.002% of loci) loci were pu-

tatively of ecological and evolutionary relevance for P. circum-

flexum, P. relictum, and local conspecific density, respectively.

Studies relating environmental variables to molecular

markers in a spatial context at the population level are becoming

increasingly common and have successfully identified a number

of putative instances of environmentally induced selection (Eckert

et al. 2010; Manel et al. 2010, 2012; Hancock et al. 2011). Di-

vergent selection in sympatry has most often been studied within

the context of ecotypes (Schluter 2000; Nosil 2012), perhaps due

to their conspicuousness, and is thought to generally be related to

selection for resource exploitation leading to reduced gene flow

(Schluter 2000; Nosil 2012). Two previous studies using long-

term data and pedigree-based quantitative genetic approaches

have suggested fine-scale adaptive divergence within great tit

populations (Garant et al. 2005; Postma and van Noordwijk

2005). In both cases, it appeared that nonrandom dispersal was

key to maintaining structure. Postma and van Noordwijk (2005)

found that microgeographic variation in clutch size could be ex-

plained by the number and genotypes of immigrants into different

sections of their study population, allowing some regions to attain

an optimal clutch size where others were swamped by maladap-

tive genotypes. Garant et al. (2005), also working on the Wytham

Woods population, found that fledgling mass differed between

ecologically distinct sections of the wood and suggested that this

differentiation was maintained by phenotype-dependent dispersal

of heavy (putatively high quality) birds into high-quality habitat.

Finding genetic structure in such a small area relative to dis-

persal capabilities was initially a surprising result given, first, that

natal dispersal of individuals within the population would seem

likely to reshuffle genotypes in space quite quickly, and second,

that approximately half of the breeding birds in any year are im-

migrants to the population. Immigrants are defined as birds that

appear in the breeding population and that are unringed, and are

therefore of unknown origin. Although it is possible that a small

proportion of these originate from breeding attempts in natural

cavities, the majority originate externally to the study popula-

tion. Because the study site is a block of forest, surrounded by

agricultural land and hedgerows, the majority of immigrants have

dispersed from natal sites >3 km from the study site (Verhulst

et al. 1997). The pattern of fine-scale environmentally induced

genetic differentiation found here, despite high levels of gene

flow, suggests to us that either differential survival postdispersal,

or differential habitat selection in relation to genotypes (cf. Postma

and van Noordwijk 2005; Garant et al. 2005), maintain fitness-

related genetic variation within this population. Classically, the

more dispersal there is within a system, the shallower a genetic

cline is predicted to be (Slatkin 1973; Lenormand 2002). Models

of the process of cline formation typically assume that a fixed

fraction of individuals disperse each generation. Armsworth and

Roughgarden (2008) reexamined the emergence of genetic clines

with fitness-dependent models that first allowed individuals to

gather information about habitat quality prior to settling and sec-

ond allowed individuals to base the decision to leave on local

habitat quality but with no directional movement bias once the

decision to leave is made. They found that fitness-dependent dis-

persal, in response to environmental conditions, produced steeper

and more responsive clines than classical models and perhaps

that processes partially explain the strong genetic gradient found

at such a fine-scale in our study.

Avian malaria is a globally distributed vector-transmitted dis-

ease infecting many bird species, but substantial mortality caused

by malaria is generally only reported for newly established host–

parasite interactions, such as isolated island populations where

the parasite, vector or both are recently introduced (Bennett et al.

1993; LaPointe et al. 2012). However, malaria-induced mortality

is most frequently found after initial infection, during the acute

phase of the infection, a stage which is brief and very difficult

to study in wild birds; hence, the effect of endemic malaria may

be underestimated in wild populations. Both P. circumflexum and

P. relictum have a global distribution (Bennett et al. 1993) and

are endemic to our study site (Lachish et al. 2011a). Of the two,

only P. circumflexum is known to increase mortality in tits, based

on work on the closely related blue tit, where uninfected birds

showed reduced survival in areas of high disease risk (Lachish

et al. 2011a); similar results have been obtained for the great tit

(I. Sepil et al., unpubl. ms.).

Genetic effects on resistance to malaria in humans provide

some of the best-known cases of genetic polymorphisms under

selection, with a range of different types of gene (associated with

genetic hemoglobin disorders, erythrocyte polymorphisms, en-

zymopathies and immunogenic variants) having been found to

affect resistance to malaria infections (Lopez et al. 2010). Much

less is known about the genetics of resistance to malaria in nat-

ural nonhuman systems, with the majority of work on passerine

birds having investigated the link between major histocompat-

ibility complex (MHC) variation and malaria resistance. There

are several indications from such work of genetic effects on

resistance to avian malaria (Bonneaud et al. 2006; Westerdahl

2006; Foster et al. 2007; see also I. Sepil et al., unpubl. ms.

for evidence of links between MHC class I variants and P. cir-

cumflexum resistance in this population) and this could lead to

selection for particular genotypes under the presence of avian

malaria. An interesting difference between the spatial distribu-

tions of infections with P. circumflexum and P. relictum has
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been documented for both great and blue tits in our study area.

Although the spatial distribution of P. circumflexum was very

stable over multiple years, the distribution of P. relictum varied

between years (Lachish et al. 2013). Further, the relative risk of

infection with P. circumflexum was considerably more variable

in space than that of P. relictum. Because breeding dispersal is

limited in great tits (Greenwood et al. 1979), this would give

scope for consistent population stratification caused by P. cir-

cumflexum, but much less so with P. relictum; further, we might

expect stronger effects owing to the greater spatial variability in

infection risk in P. circumflexum. Overall, the fact that the greatest

number of SNPs showed spatial associations with this feature of

the environment is consistent with this scenario.

Besides associations with avian malaria, both the spatial and

nonspatial GEAS found several significant SNPs correlating with

local conspecific density. Although this might be the result of

correlations between P. circumflexum, P. relictum, and local con-

specific density, we might also expect local conspecific density to

play a role in the infection risk of one or both Plasmodium spp.

Density dependence of Plasmodium infection has been described

in blue tits (Lachish et al. 2013), and while vector-transmitted dis-

eases are expected to be frequency-dependent rather than density-

dependent, it is possible that indirect effects of host density (e.g.,

physiological stress due to over-crowding) might increase the risk

of infection (see Lachish et al. 2013 for more discussion). How-

ever, there are a number of other routes by which variable local

conspecific density could lead to selection on underlying genetic

variants. For example, increased local conspecific density is likely

to be associated with increased rates of social interaction, which

might select for individuals resilient to social stress. Alternatively,

density-dependent life-history decisions (e.g., Wilkin et al. 2006;

Wilkin and Sheldon 2009) may select for particular suites of

life-history traits in areas of different local conspecific density

(e.g., individuals that prioritize offspring quality over number,

and future reproduction over current reproduction, at high local

conspecific density). Clearly, more work needs to be done to un-

derstand the potential selective mechanisms that might generate

selection due to local conspecific density.

Although both oak tree density and altitude correlate with

fitness and are spatially structured (Wilkin et al. 2009a, b; Wilkin

and Sheldon 2009), we did not find any significant correlations

with SNPs. This suggests, given that our SNP set sufficiently

covers the genome, that no detectable genetic structure was cor-

related with these environmental features. This could be either

because the spatial scale of our study was too small or selection

was too weak given high gene flow (Lenormand 2002). It is also

possible that other selection patterns interfere: for instance, in the

case of territory quality there is scope for sexually antagonistic

selection. Because lifetime reproductive success of females de-

pends largely on the quality of the breeding locations, whereas

the lifetime reproductive success of males seems to depend more

on their natal locations (Wilkin and Sheldon 2009), sexual antag-

onistic selection might reduce selection for traits associated with

territory quality.

Understanding the mechanisms responsible for maintaining

fine-scale genetic structure and driving microevolutionary change

within populations is important for evolutionary and ecological

theory, conservation, and management. Many theoretical mod-

els in ecology and evolution implicitly or explicitly assume that

individuals are close enough to interact in predictable ways in

space and time. Discontinuities among interacting individuals are

often of research interest (i.e., individuals, families, extended so-

cial groups, demes, subpopulations, and populations). Empirical

work toward understanding how the genetic make-up of these

units interacts with the spatial environmental processes leading to

the heterogeneity of interest is thus vital. For example, the origin

and maintenance of adaptive variation is often considered to be

a trade-off between the swamping effects of gene flow and the

strength of local selection (Lenormand 2002). Here, we provide

evidence that adaptive genetic variation can be maintained de-

spite high levels of gene flow. Evolutionary change over short

time scales or at fine spatial scales is rarely investigated; however,

a small but growing body of work (Garant et al. 2005; Postma

et al. 2005; Tonnis et al. 2005; Porlier et al. 2012) show that it

is important to do so. The mechanisms of maintenance, whether

due to nonrandom dispersal or fitness- and survival-related costs

associated with genotypes, remain to be tested. From a conserva-

tion and management perspective, the importance of protecting

locally adapted populations has been a long recognized, if elusive,

goal (Lande and Barrowclough 1987; Funk et al. 2012). However,

increasingly available genomic data will change how important

conservation units are delineated (Funk et al. 2012). For exam-

ple, for great tits there is little genetic differentiation over broad

spatial scales (e.g., United Kingdom and The Netherlands: van

Bers et al. 2012). However, the potential for local adaption de-

spite little overall genetic differentiation remains. Although great

tits are not in need of management, our results are illustrative of

the potential for landscape genetic approaches for understanding

local adaptation to contribute importantly to conservation.
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SPECIAL SECTION

Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Figure S1. Comparison of different methods to calculate significance of correlations between single-nucleotide polymorphisms

(SNPs) and various environmental traits for great tits breeding in Wytham Woods, Oxford, U.K.

Figure S2. A spatial principal components analysis (sPCA) screeplot (Jombart et al. 2008) displaying the decomposition of

eigenvalues into variance and a spatial autocorrelation (Moran’s I) components.

Figure S3. Locations of the significant single-nucleotide polymorphisms (SNPs) for malaria infection risk and local conspecific

density on the Great tit genome.

Figure S4. Correlations between (a, c) the parameter estimates of the spatial genomic regressions and (b, d) the environmental

trait values themselves.

3 5 0 0 EVOLUTION DECEMBER 2013


