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Abstract

Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to
collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape
genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic distance, such as
conditional genetic distance (cGD), might be particularly sensitive to sampling intensity because pairwise estimates are
relative to the entire network. We addressed this question by subsampling microsatellite data from two empirical datasets.
We found that pairwise estimates of cGD were sensitive to both unsampled and under-sampled sites, and FST, Dest, and deucl

were more sensitive to under-sampled than unsampled sites. We found that the rank order of cGD was also sensitive to
unsampled and under-sampled sites, but not enough to affect the outcome of Mantel tests for isolation by distance. We
simulated isolation by resistance and found that although cGD estimates were sensitive to unsampled sites, by increasing
the number of sites sampled the accuracy of conclusions drawn from landscape genetic analyses increased, a feature that is
not possible with pairwise estimates of genetic differentiation such as FST, Dest, and deucl. We suggest that users of cGD
assess the sensitivity of this measure by subsampling within their own network and use caution when making
extrapolations beyond their sampled network.
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Introduction

Genetic connectivity and gene flow are important for

maintaining healthy populations of plants and animals; popula-

tions that exchange genes with other populations maintain or

increase their genetic diversity and thus decrease their risk of

extirpation [1]. It is therefore an important research goal to

estimate gene flow and the habitat features and configurations that

both promote and impede it, so that the effects of landscape

structure on gene flow can be estimated. Assessing the relationship

between genetic connectivity and landscape structure is a central

goal in the field of landscape genetics [2,3].

It is rarely possible to sample all individuals of the species or

population of interest. Some areas may be logistically difficult to

access, the researcher may be unaware of the existence of

particular populations, it may be difficult to obtain samples from

low-density populations, or it may not be financially feasible to

genotype all of the collected samples. One challenge for landscape

geneticists is thus to determine the appropriate spatial sampling

scheme for collecting genetic samples. Samples can be collected

uniformly across space, with the goal of conducting individual-

based analyses [4–7], or many samples can be collected from

several discrete sites with the goal of conducting site-based analyses

[8–11]. Where and how many samples are collected may influence

the conclusions drawn from landscape genetic analyses. For

example, Schwartz and McKelvey [12] showed that the choice of

sampling protocol can influence conclusions about population

clustering. It is possible that individuals or sites that are

instrumental for driving gene flow across the landscape have not

been sampled in a given study. Beerli [13] described a scenario

whereby two sampled populations exchange few migrants, but the

presence of a third, unsampled population that supplies the same

alleles to the first two populations could result in an overestimate

of migration between the two sampled populations. For individual-

based analyses, Landguth et al. [14] found that the number of

sampled individuals does not influence the power of landscape

genetic analyses relative to the numbers of loci and alleles, but

stressed the need for a similar investigation with site-based study

designs (but see [15]). It should therefore be of interest to

landscape geneticists to investigate explicitly the influence that

unsampled and under-sampled sites have on estimates of genetic

differentiation and gene flow.

A second challenge for landscape geneticists is the choice of a

metric that best estimates genetic differentiation between pairs of

individuals or pairs of sites. Landscape genetic studies use a variety

of metrics to index the same property: the amount of gene flow

between two populations relative to the gene flow between other

pairs of populations. For example, Hokit et al. [16] compared

pairwise estimates of FST to the least cost path (LCP) among

sampling sites, whereas Lange et al. [17] and Dyer et al. [18]
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compared pairwise estimates of Dest [19] and conditional genetic

distance (cGD) [20], respectively, to the LCP among sampling sites.

Unsampled and under-sampled sites might differentially affect

these measures of genetic distance.

FST [21] is a widely used measure of genetic fixation, calculated

as a ratio of the variance in allele frequencies among populations

to the overall variance. Dest [19] is a measure of relative genetic

differentiation between populations that predictably varies be-

tween 0 (no differentiation) and 1 (complete differentiation). deucl

[22] is akin to Rogers distance [23]; it is the straight-line distance

between nodes based on allele frequencies of populations plotted

in multivariate space [22]. Dyer and Nason [20] introduced cGD

as a metric describing genetic differentiation between sampling

sites based on network analyses. Conditional genetic distance

represents the relative strength of the genetic covariance between

sampled sites. Sites are represented by nodes in a network, and

genetic differentiation is represented by edges in a network. Node

centroids are defined by the mean of individuals at that site across

alleles in multidimensional space. A saturated network of inter-

population covariances, with edges connecting all nodes, is then

pruned based on conditional independence, such that edges that

do not contribute to the overall genetic covariance structure are

removed. Conditional genetic distance between sites is then

estimated as the shortest path through the pruned network. Dyer

et al. [18] showed that cGD is a more powerful estimate of genetic

differentiation than pairwise genetic distance estimates, such as

FST, in a landscape genetic context. This is because cGD considers

the genetic information simultaneously from all sites and is thus

dependent on which sites are included in the network. Because

cGD estimates are relative to other connections within the network,

they are likely sensitive to unsampled or under-sampled sites.

Concern over the effect of missing nodes on network parameters

is not new: several studies have examined its effect on network

attributes such as degree, clustering coefficient, path length, and

betweenness in social networks [24–27]. Recently, Naujokaitis-

Lewis et al. [28] investigated the sensitivity of genetic networks to

unsampled nodes and found an effect of both sampling intensity

and network algorithm (i.e., saturated, Gabriel, or minimum

spanning tree). Similarly, Garroway et al. [29] assessed the

resiliency of a population graph [20] to missing nodes. They found

that the path length of their network changed little with the

removal of the most connected nodes. Although these studies are

useful in describing the effects of missing nodes on the global

structure of networks (i.e., features that can only be determined by

examining the entire network, such as betweenness, closeness,

degree distribution, and path length), we do not know the effect of

missing nodes on edge weight (particularly cGD obtained from

population graphs), which forms the basis of landscape genetic

analyses.

We subsampled empirical data to assess: (1) the sensitivity of

cGD and other genetic distance estimators (FST, Dest, and deucl) to

unsampled and under-sampled sites, and how that sensitivity is

influenced by both genetic structure and the connectivity of the

unsampled or under-sampled sites; (2) the sensitivity of the rank

order of pairwise cGD to unsampled or under-sampled sites; and (3)

the effect that the change in rank order of cGD has on the outcome

of landscape genetic analyses (i.e., Mantel tests). Finally, we used

simulated data to demonstrate the influence that unsampled sites

may have on our ability to detect isolation by resistance using cGD.

To summarize, in part (1) we compared the relative error of cGD to

FST, Dest, and deucl. In parts (2) and (3), we focused on assessing the

sensitivity of cGD to unsampled and under-sampled sites.

Methods

Data
We used empirical microsatellite data from American martens

(Martes Americana) and fishers (Martes pennanti) sampled in Ontario,

Canada (Fig. 1) to test the effects of unsampled and under-sampled

sites on 4 different genetic distance measures: cGD, FST, Dest, and

deucl. We used two different datasets because they varied in the

extent of genetic clustering. The marten dataset contained 653

individual martens sampled at 29 sites and genotyped at 12

microsatellite loci [30]. There were 11–47 individuals sampled per

site (average = 22.5, SD = 5.9) between 2004 and 2005. Previous

work on this dataset revealed one genetic cluster (K = 1) [30]. The

fisher dataset contained 772 individuals sampled at 34 sites across

Ontario, northern New York State, USA, and southern Quebec,

Canada, between 2000 and 2003 [8,29,31]. There were 7–48

individuals sampled per site (average = 21.2, SD = 7.1). The

samples were genotyped at 16 microsatellite loci [8]. Previous

work with these data suggested 5 genetic clusters (K = 5), with 5–11

sites per cluster [8,29].

Software
We used gstudio 0.6 [22] in R [32] to build genetic networks

and estimate the network properties cGD and deucl [18]. We

estimated pairwise FST [21] with software GENEPOP web version

4.0.10 [33]. We used SMOGD 1.2.5 [34] to estimate pairwise Dest

[19].

Unsampled sites
We used the marten and fisher data to simulate studies where

the population has not been fully sampled. For both species,

populations were continuously distributed across the study areas,

and we sampled individuals at discrete sites. For the purposes of

our study, we assumed that the full dataset of 29 sites for marten

and 34 sites for fisher provided a true measure of gene flow for

each species; we considered all pairwise calculations of subsampled

data relative to this ‘‘true’’ measure. It is likely that these full

networks were, in fact, under-sampled representations of the true

marten and fisher populations in Ontario, but for this study we

assume that the full networks represented true gene flow.

We followed three steps to assess the response of gene flow

estimates to unsampled sites: (1) we removed half of the sites (14

from the marten dataset, and 17 from the fisher dataset), leaving

15 and 17 sites in the marten and fisher datasets, respectively, and

calculated pairwise cGD, FST, Dest, and deucl for those remaining 15

or 17 sites; (2) we added one site to the network, and recalculated

the pairwise cGD, FST, Dest, and deucl for the original 15 or 17 sites;

(3) we repeated step two until we had included all 29 (marten) or

34 (fisher) sites; we considered this to be the full (true) dataset,

although at each step we only recorded pairwise measures between

the initial 15 (marten) or 17 (fisher) sites. By using pairwise

estimates between the 15 or 17 sites only to compare mean genetic

distance across iterations, we were able to hold sample size

constant. We repeated this set of steps twice: in the first experiment

(termed ‘‘least connected’’), we retained the 15 (marten) or 17

(fisher) most connected sites (i.e., sites with the largest network

eigenvector centrality), and the sites that we added back into the

analysis, one site at a time, were the least connected sites (in the

order of most to least connected). In the second experiment

(termed ‘‘most connected’’), we retained the 15 (marten) or 17

(fisher) least connected sites, and added the most connected sites

into the analysis, one site for each iteration (in the order of least to

most connected). In this way, we were able to assess the

Sensitivity of Genetic Connectivity Measures
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importance of an unsampled node’s connectedness to measures of

genetic connectivity in the rest of the network.

Eigenvector centrality is a node-based measure of the connect-

edness of a particular node and the nodes that are connected to it.

It is a measure of a node’s importance in a network as a function of

how connected its neighbours are. We calculated eigenvector

centrality with the software GeneticStudio [35] and ranked sites

based on eigenvector centrality to identify which sites to remove

(i.e., to identify the most or least connected sites). We chose

eigenvector centrality over other measures of a node’s importance,

such as its degree or betweenness, because it distinguishes between

nodes with the same degree that are connected to well-connected

(or less well-connected) nodes.

Under-sampled sites
We used microsatellite data from martens and fishers to

simulate a study where the sites have been under-sampled. Once

again, we considered the full dataset of 653 martens (at 29 sites)

and 722 fishers (at 34 sites) to be the true measure of gene flow for

each species, to which we compared all genetic distance estimates

from the subsampled data.

We assessed the effect of under-sampled sites on pairwise

measures of genetic distance by following three steps: (1) we

removed half of the individuals from each site, with the exception

of site 2 for the marten dataset and site 33 for the fisher dataset (see

below), and calculated cGD, FST, Dest, and deucl; (2) we added one

individual back to each site, and recalculated cGD, FST, Dest, and

deucl; (3) we repeated step two until we had included all individuals.

We repeated the series of steps 1–3 twice: in the first experiment

(termed ‘‘rare’’), the individuals that we removed in step 1 had rare

genotypes relative to the entire sample, and we added those

individuals back into the network in order of least to most rare. In

the second experiment (termed ‘‘common’’), the individuals that

we removed in step one had common genotypes relative to the

entire sample, and we added individuals back into the network in

order of least to most common.

We identified individuals with rare genotypes by conducting a

principal component analysis on allele frequencies for all

individuals with the Adegenet (1.3) [36] and Ade4 (1.4–14) [37]

packages for R. We extracted the scores for the first component for

each individual; the extreme positive and extreme negative scores

represent individuals with rare genotypes (with respect to the first

component) relative to individuals with scores close to zero. We

then sorted individuals by site, and removed half of the individuals

with the most extreme positive or negative scores (or scores closest

to zero for the second simulation) for each site in step one.

For each iteration, we added 1 individual back to each site. The

number of individuals per site varied between 11 and 47; this

meant that not every site received an additional individual at each

iteration. For example, site 27 of the marten dataset had only 11

individuals, therefore we retained six individuals and added one

individual to that site for the first five iterations only; iterations 6–

14 of the marten dataset did not include an additional individual at

site 27. Site 2 of the marten dataset had 47 individuals (the next

most well-sampled sites were sites 1 and 18 with 27 individuals

each). Rather than remove one half of the individuals from site 2,

we removed 13, which resulted in 13 iterations, such that we

added one individual to sites one, two, and 18 at each of the 13

iterations. Site 33 of the fisher dataset had 48 individuals; we

removed 17 of these individuals, resulting in 17 iterations (rather

than 24 iterations had we removed one half of the individuals from

site 33).

Relative Error
For both datasets, and for both unsampled and under-sampled

sites, we calculated the absolute relative error between the mean of

Figure 1. Locations of American marten (Martes americana; n = 29) and fisher (M. pennanti; n = 34) sampling sites. Inset shows location of
Ontario and Quebec, Canada, and New York, USA, within central North America.
doi:10.1371/journal.pone.0056204.g001
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the pairwise genetic distance estimate at each iteration and the

‘true’ estimate (i.e., the estimate based on all data):

relative error~
(valuetrue{valueestimate)

valuetrue

�
�
�
�

�
�
�
�

x 100

We compared mean estimates of relative error with Cohen’s

effect size d (the difference between group means, divided by the

pooled standard deviation), using Cohen’s general guidelines that

d = 0.2 is a small effect, d = 0.5 is a medium effect, and d = 0.8 is a

large effect [38]. We also used two-sample permutation tests (9999

randomizations) with DAAG (1.12) [39] in R to compare mean

estimates of relative error between genetic distance measures,

genetic structure (i.e., marten (one genetic cluster) or fisher (5

genetic clusters)), or experiment (i.e., most or least connected sites,

or common or rare individuals added to the dataset at each

iteration); we made specific comparisons depending on the

question that we asked, rather than making all possible compar-

isons, and used a= 0.05 [40].

Unsampled vs. under-sampled sites
We used effect size and two-sample permutation tests (9999

randomizations with DAAG in R) to assess the relative sensitivity

of cGD to unsampled versus under-sampled sites. We pooled data

over experiment (most and least connected sites) for the unsampled

scenario, and over experiment (common and rare individuals) for

the under-sampled scenario, and compared mean absolute relative

error between unsampled and under-sampled scenarios separately

for the marten and fisher datasets.

Overview of study design
For our experiment assessing the effects of unsampled sites, we

removed half of the sites from the full dataset. All calculations of

relative error were based on the remaining sites. In the first

iteration, we calculated our summary statistic (cGD, FST, Dest, or

deucl) for those remaining sites. We then calculated relative error by

comparing these estimated summary statistics to estimates of the

same statistics for the full dataset. For the second iteration, we

added one site, and recalculated the summary statistic for the

original set of remaining sites. In this experiment, we expected

summary statistics of pairwise estimates (FST, Dest, and deucl) to have

relative errors of zero, because the inclusion of other sites in the

dataset should not influence these pairwise statistics. However, we

expected that the inclusion of other sites in a genetic network

should influence cGD, even if the exact same pairs of sites are

compared at each iteration, because calculations of cGD are based

on the genetic covariance of all sites present in the dataset.

For our experiment assessing the effects of under-sampled sites,

we removed half of the individuals from each site. At each

subsampling iteration, we added one individual per site, and re-

calculated the summary statistics. Our calculations of relative error

compared all sites (29 for marten, 34 for fisher), with the

subsampled iterations having fewer individuals per site, and the

full dataset including all individuals per site. We expected all of the

summary statistics that we tested to be sensitive to under-sampled

sites.

Sensitivity of between-node cGD rank
We were interested in the effect of unsampled and under-

sampled sites on the rank order of pairwise cGD values within the

network (i.e., whether pairs of sites with high relative cGD

remained relatively high when new sites or individuals at each site

were added to the network). For each iteration of the network, we

used Spearman’s rank correlation (r) to compare the rank order of

the pairs to the ‘true’ network. If there was no effect of unsampled

or under-sampled sites on the relative ranking of cGD, we expected

a high Spearman’s r (i.e., few deviations in the rank value between

each iteration and the full network). We compared the mean

(across iterations) Spearman’s r between marten and fisher

datasets and between experiments (least vs. most connected sites,

or common vs. rare individuals added at each iteration) by

considering both effect size and two-sample permutation tests

(9999 randomizations with DAAG in R).

We used effect size and two-sample permutation tests to assess

the relative sensitivity of the rank order of cGD to unsampled

versus under-sampled sites. We pooled data over experiment (most

and least connected sites) for the unsampled scenario, and over

experiment (common and rare individuals) for the under-sampled

scenario, and compared Spearman’s r between unsampled and

under-sampled scenarios separately for the marten and fisher

datasets.

Effect of unsampled and under-sampled sites on
landscape genetic analyses

We were interested in assessing how unsampled or under-

sampled sites affected our ability to detect landscape genetic

relationships based on cGD. Both the marten [30] and fisher [8]

datasets showed an isolation by distance pattern. We calculated

the Mantel correlation coefficient r [41] of cGD and log Euclidean

distance for each iteration with the Ecodist package (1.2.7) [42] in

R (9999 permutations). We used bootstrapping in Ecodist to

calculate 95% confidence intervals for the full dataset (10,000

iterations, sampling 90% of the data without replacement [42]). If

there was no effect of unsampled or under-sampled sites on

landscape genetics relationships, we expected to see a significant

(a= 0.05) Mantel r statistic for each iteration, as we did for the full

datasets. We compared the absolute mean (across iterations)

relative error of the Mantel r statistic between datasets and

simulations with effect sizes and two-sample permutation tests

(9999 randomizations).

Isolation-by-resistance simulation
We used a simulation to visualize the influence of unsampled

sites on estimates of cGD across a simple cost surface (Fig. 2). Our

cost surface consisted of 49 cells (565 units within each cell); nine

cells acted as a complete barrier to movement (black cells) whereas

we assigned the remaining cells a low cost of one. We populated

nine cells in the landscape with 50 individuals at each cell (one

male and one female at each of 25 units in a cell, such that each

pair of individuals in a cell was 1 unit apart), for a total of 450

individuals. Each individual was randomly assigned a genotype of

15 loci with 10 possible alleles per locus, with a k-allele mutation

rate of 0.0005. We used program CDPOP version 1.2.05 [43] to

simulate dispersal and mating between individuals at all nine sites

for 250 non-overlapping generations. At each generation, 50% of

the adults died and each mated pair produced four offspring in an

equal sex ratio. Individuals moved up to 3 units to mate (with

replacement), and juveniles dispersed as a function of the inverse-

square of cost with a maximum cost distance of 25 units; this

allowed individuals to disperse no farther than to two sampled cells

away from their natal site. We replicated this simulation 21 times.

Our simulation parameters were similar to those used in other

studies [14,44,45,46].

We selected sites 4, 5, and 6 (Fig. 2) to be unsampled sites; these

sites contributed to gene flow (i.e., they were included in the

CDPOP simulation), but were not subsequently sampled (i.e., the

Sensitivity of Genetic Connectivity Measures
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genotypes of individuals from these sites did not contribute to our

pairwise estimates of genetic distance). Thus, we calculated all

pairwise estimates of cGD between the core sites (sites 1, 2, 3, 7, 8,

and 9) only. To investigate the influence of these unsampled sites

on pairwise cGD estimates, we recalculated cGD three times. In the

first calculation, we included one of the unsampled sites (site 6) in

the network, but calculated mean pairwise cGD for the 6 core sites

only. In the second calculation, we included 2 of the unsampled

sites (sites 4 and 6) in the network. In the third calculation, we

included all 3 unsampled sites (sites 4, 5, and 6) in the network, and

calculated cGD between the 6 core sites only. In this way, we were

able to assess the influence of including these sites without altering

sample size or study area extent.

We calculated Mantel r values using pairwise cGD estimates and

the cost distance (log-transformed) between the core 6 sites with

the package Ade4 (1.4–14) [37] in R (9999 permutations). We used

Cohen’s [38] effect size and two-sample permutation tests (9999

randomizations with DAAG in R) to compare mean (across all 21

replicate simulations) Mantel r values between estimates based on

networks that included 1, 2, or all 3 of the previously unsampled

sites.

Results

We used 4 summary statistics to describe our full, not sub-

sampled, datasets (Table 1).

Sensitivity of genetic distance measures to unsampled
sites

We estimated the absolute relative error between the full set of

data and datasets with fewer sampled sites (Fig. 3, Table 2). The

average absolute relative error of cGD, across all iterations and all

simulations of the effect of unsampled sites, was 12.3%. We found

that cGD was more sensitive to the effects of unsampled sites than

FST, Dest, and deucl: not surprisingly, the mean absolute relative

error was zero across all iterations for FST, Dest, and deucl. The mean

absolute relative error for cGD was significantly greater than zero

(P,0.001 for all combinations of marten and fisher datasets and

most and least connected sites removed) and the effect size was

large (range d = 1.3–2.5).

We did not find a difference in the sensitivity (mean absolute

relative error) of cGD to unsampled sites that were strongly or

weakly connected (marten dataset d = 0.250, P = 0.558; fisher

dataset d = 0.073, P = 0.832). We also did not find a difference in

the sensitivity of cGD to unsampled sites between the fisher or

marten datasets (least connected sites removed, d = 0.368,

P = 0.340; most connected sites removed, d = 0.147, P = 0.680).

Sensitivity of genetic distance measures to under-
sampled sites

We found that mean relative error was higher for simulations

with common individuals removed than with rare individuals

removed when we measured genetic distance with deucl for the

fisher (d = 1.049, P = 0.0037) but not the marten (d = 0.050,

P = 0.898) dataset (Fig. 4, Table 2). Mean relative error for the

simulations with common individuals removed was higher than

with rare individuals removed when we used FST for the marten

dataset (d = 0.784, P = 0.054) but not the fisher dataset (d = 0.436,

P = 0.230). We found no difference in mean relative error between

simulations with rare or common individuals removed from each

site for cGD or Dest (range d = 0.112–0.503).

The mean relative error was higher for the marten than the

fisher dataset when we used deucl as the measure of genetic distance

and removed rare individuals from the simulations (d = 1.019,

P = 0.005). Otherwise, we found no difference in mean relative

error between marten and fisher datasets (range d = 0.038–0.578).

We found general differences in mean relative error between

genetic distance estimators (Table 3): cGD had higher relative error

than both deucl and FST, and Dest had higher relative error than deucl.

When we considered the effect of under-sampled sites on the

fisher dataset, in which individuals with common genotypes were

added to the network at each iteration, the first, third, and sixth

iterations resulted in a subdivided network. The result was two

sub-networks that were not connected by an edge, and thus there

Figure 2. The cost surface used in the simulation of isolation by
resistance. Grey cells represent low cost and black cells represent a
barrier. We simulated gene flow between black dots for 250
generations. Numbers represent sites. Juveniles can disperse up to
two sites away from their natal site. Unsampled populations are sites 4,
5, and 6; they contribute to gene flow but are not included in the
calculation of genetic differentiation.
doi:10.1371/journal.pone.0056204.g002

Table 1. Summary of genetic datasets1 used in a study of
genetic connectivity measures.

Summary
statistic Marten Fisher

Mean SD Range Mean SD Range

FST
2 0.022 0.018 0–0.102 0.068 0.046 0–0.266

Dest
3 0.019 0.022 0–0.125 0.073 0.068 0–0.349

Deucl
4 2.719 0.544 1.44–4.86 5.390 1.376 1.930–10.291

cGD4 6.533 2.040 2.448–11.26 10.25 3.749 2.678–9.97

1The marten (Martes americana) dataset (n = 653, sampled at 29 sites) can be
described as one genetic cluster. The fisher (M. pennanti) dataset (n = 772,
sampled at 34 sites) was comprised of five genetic clusters. Both marten and
fisher datasets originated from samples collected in Ontario, Canada. The
number of clusters was determined by program Structure [54]
2Estimated with GENEPOP web version 4.0.10 [33]
3Estimated with SMOGD 1.2.5 [34]
4Estimated with gstudio 0.6 [22]
doi:10.1371/journal.pone.0056204.t001
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were no pairwise estimates of cGD between sites in different sub-

networks. This did not have an effect on pairwise estimates of FST,

Dest, or deucl.

Unsampled vs. under-sampled sites
Mean absolute relative error of cGD was significantly greater for

under-sampled than for unsampled sites (marten dataset d = 0.638,

P = 0.0221; fisher dataset d = 0.804, P = 0.001). Similarly for FST,

Dest, and deucl, mean absolute relative error was greater for the

under-sampled than for the unsampled sites (effect size d ranged

from 0.698–1.62).

Sensitivity of between-node cGD rank
The rank order of cGD changed at each iteration, and we used

Spearman’s r to quantify the deviation relative to the full dataset.

Mean r ranged from 0.30 to 0.96 for iterations with unsampled

sites (Fig. 5), where small values reflect high deviation. We found

no difference in mean r between simulations with the most

connected and the least connected sites added at each iteration

(marten dataset d = 0.439, P = 0.249; fisher dataset d = 0.515,

P = 0.149). The marten dataset (one genetic cluster) was more

sensitive than the fisher dataset (five genetic clusters) to unsampled

sites with respect to rank order of cGD (most connected sites

removed d = 0.800, P = 0.039; least connected sites removed

d = 0.816, P = 0.025).

Mean r ranged from 0.22 to 0.99 for iterations with under-

sampled sites (Fig. 6). We did not find a difference in the sensitivity

of the rank order of cGD (i.e., mean r) to under-sampled sites that

were missing individuals with common or rare genotypes (marten

dataset d = 0.097, P = 0.804, fisher dataset d = 0.059, P = 0.865).

We did, however, find an effect of genetic structure on the

deviation of the rank order of cGD relative to the full dataset: the

marten dataset was more sensitive (lower mean r) than the fisher

dataset to under-sampled sites (common individuals removed

d = 0.971, P = 0.0134; rare individuals removed d = 0.967,

P = 0.015).

Mean Spearman’s r for cGD did not differ between unsampled

(pooled over most and least connected sites) and under-sampled

(pooled over common and rare individuals) sites (marten dataset

d = 0.0869, P = 0.744; fisher dataset d = 0.356, P = 0.153).

Effect of unsampled and under-sampled sites on
landscape genetic analyses

We used Mantel tests to compare estimates of cGD to log

Euclidean distance. We found that unsampled sites affected the

relative error of Mantel r: absolute relative error ranged from 0.43

to 106.8% (Fig. 7). We found a larger effect of unsampled sites

when the sites left unsampled were the most-connected relative to

when they were the least connected (marten dataset d = 1.299,

P = 0.0038; fisher dataset d = 0.491, P = 0.160). We also found a

larger effect of unsampled sites on the relative error of Mantel r for

the marten dataset relative to the fisher dataset (least connected

sites removed d = 0.699, P = 0.031; most connected sites removed

d = 2.317, P,0.001).

We found that under-sampled sites also affected Mantel r

estimates; absolute relative error of Mantel r ranged from 0.18 to

48.0% (Fig. 8). We found no difference in the effect of under-

sampled sites on Mantel r between the marten and fisher datasets

(common individuals removed d = 0.005, P = 0.990; rare individ-

uals removed d = 0.331, P = 0.394). We found no difference in

mean relative error between simulations with common or rare

individuals left unsampled for both the marten (d = 0.606,

P = 0.135) and fisher (d = 0.144, P = 0.691) datasets. Overall, mean

relative error of Mantel r was larger for unsampled sites than for

under-sampled sites for the marten dataset (d = 1.349, P,0.001)

but not for the fisher dataset (d = 0.364, P = 0.147).

We found significant (a= 0.05) isolation by distance with simple

Mantel tests for both full datasets (marten Mantel r = 0.355; fisher

Mantel r = 0.586), and we found significant isolation by distance

for every subsampled iteration except 3 of 14 iterations of the

marten dataset where the least-connected sites were not sampled

(Fig. 7a).

Isolation-by-resistance simulation
Our simulation of isolation-by-resistance (Fig. 2) demonstrated

the sensitivity of cGD and the network to unsampled sites because

we knew for certain that isolation by resistance was driving gene

flow. We found that increased sampling (i.e., including all nine

populations in the network) resulted in more accurate estimates of

cGD (Fig. 9): mean Mantel r was significantly larger, and thus

closer to 1 which would imply perfect detection of the isolation by

Figure 3. The effect of unsampled sites on conditional genetic distance (cGD) estimates. We represented the marten (Martes americana)
dataset with hollow symbols and the fisher (M. pennanti) dataset with filled symbols. We have presented values as the absolute relative error (%)
between the mean pairwise cGD estimate at each iteration and the cGD estimate for the full dataset (‘true’ measure). Each iteration represents the
addition of one site to the analysis, where the first iteration has 15 (marten) or 17 (fisher) sites, and the last iteration has 29 (marten) or 34 (fisher) sites.
In a), the sites that we added back into the analysis were the least connected, and in b), the sites that we added back into the analysis were the most
connected (according to eigenvector centrality estimates).
doi:10.1371/journal.pone.0056204.g003
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resistance process that we modeled, when we included sites 4, 5,

and 6 than when we did not (d = 0.805, P = 0.011). We found that

adding one site at a time to the network had only a small effect on

mean Mantel r values (3 versus 2 unsampled sites, d = 0.376; 2

versus 1 unsampled site, d = 0.325; 1 versus 0 unsampled site,

d = 0.114). For FST, Dest, and deucl, Mantel r did not change as more

sites were added (results not shown), implying that the accuracy of

the estimate cannot increase with increased sampling.

Discussion

We found that pairwise estimates of cGD were sensitive to both

unsampled and under-sampled sites: absolute relative error was as

high as 71.3 and 112.1%, respectively. Although all genetic

estimators that we compared were sensitive to under-sampled sites,

cGD was more sensitive than both FST and deucl. Similarly, with

respect to unsampled sites, cGD was more sensitive than other

measures of genetic differentiation such as FST, Dest, and deucl. This

is because these genetic differentiation measures are true pairwise

measures; their calculations involve comparing the alleles present

only at the pair of sites in question. Conversely, pairwise estimates

of cGD are calculated based on the covariance of alleles present at

all sites in the network. By its nature then, cGD will be sensitive to

unsampled sites whereas FST, Dest, and deucl will not. The

interpretation of absolute relative error is challenging because

we do not know how sensitive is too sensitive. For landscape

genetic analyses, the answer may lie in whether this sensitivity

leads to changes in the rank order of cGD estimates and

conclusions about Mantel r or other test statistics.

The sensitivity of the rank order of cGD is important because it

is the basis of current landscape genetic analyses: analyses of

isolation by distance or isolation by resistance are rooted in

correlations between pairwise estimates of genetic differentiation

and pairwise estimates of Euclidean or cost distance. The rank

order of pairwise cGD estimates determines the strength of this

relationship. If pairs of sites with the smallest (or the largest) cGD

estimates are closest to (or farthest from) one another in

geographic space relative to the other sites in the study, the

researcher might conclude a pattern of isolation by distance. If one

or more sites were not sampled and by not sampling these sites the

rank order of cGD estimates changed (i.e., pairs of sites separated

by the largest geographic distances were no longer separated by

largest genetic distances), then the researcher may not conclude

isolation by distance, even though isolation by distance was indeed

the process driving genetic structure. We found that unsampled

and under-sampled sites caused the rank order of cGD to deviate

relative to the full dataset. We quantified these deviations with

Spearman’s r, which we found to be as low as 0.30 and 0.22 for

unsampled and under-sampled sites, respectively. Deviations from

the full dataset of the rank order of cGD tended to become smaller

as more sites or more individuals per site were included in the

network (Figs 5 and 6), indicating that increased sampling can

alleviate the concern of uncertain rank order of pairwise cGD

estimates. We also found that the marten dataset (one genetic

cluster) was more sensitive than the fisher dataset (five genetic

clusters) to deviations in rank order of cGD due to both unsampled

and under-sampled sites; researchers should be aware of this,

particularly when their study system has minimal genetic structure.

As with mean relative error of cGD estimates, it is difficult to

determine the threshold value of Spearman’s r at which one

would conclude that deviations in rank order are too high.

Ultimately, deviations in rank order are too high when the

accuracy of the resulting test statistic decreases, leading to

increased risk of type 1 error.

We found that Mantel r statistics were sensitive to unsampled

and under-sampled sites: relative error was as high as 106.8 and

48%, respectively. We found Mantel r to be more sensitive to the

effect of unsampled than under-sampled sites, especially when

there was little genetic structure (marten data), and the sites that

were not sampled were the most-connected sites. Our results

suggest that landscape geneticists should invest in sampling more

sites rather than more individuals per site, especially when there is

minimal genetic structure, as this will increase the accuracy of

Mantel r statistics. Landguth et al. [14] investigated statistical

power in landscape genetic analyses using individual-based rather

than site-based sampling designs; higher statistical power was

obtained when effort was allocated toward increasing the number

of microsatellite loci rather than number of individuals sampled.

Table 2. Absolute mean percent relative error (RE) of genetic
distance estimates across iterations.

Genetic
measure Dataset1 Units added2

Mean
(RE) SD

Unsampled cGD Marten Least
connected

16.05 17.70

Most
connected

12.22 12.48

Fisher Least
connected

11.16 6.31

Most
connected

10.54 10.20

deucl, Dest, FST Marten Least
connected

0 0

Most
connected

0 0

Fisher Least
connected

0 0

Most
connected

0 0

Under-
sampled

cGD Marten Common 31.71 30.36

Rare 23.74 21.41

Fisher Common 32.95 35.26

Rare 27.63 31.86

deucl Marten Common 6.95 6.65

Rare 7.31 7.58

Fisher Common 8.04 8.37

Rare 1.58 2.40

Dest Marten Common 15.91 12.94

Rare 17.15 8.69

Fisher Common 11.62 10.03

Rare 18.55 16.74

FST Marten Common 10.82 8.40

Rare 5.49 4.67

Fisher Common 14.47 14.09

Rare 9.40 8.38

1The marten dataset (K = 1) is unclustered and the fisher dataset (K = 5) is
clustered
2The sites that we added back into the analysis were either the least or the most
connected (according to eigenvector centrality estimates). The individuals that
we added to each site had either common or rare genotypes (according to
scores on the first principal component).
doi:10.1371/journal.pone.0056204.t002
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Hale et al. [15] found that the accuracy of allele frequencies in site-

based analyses leveled off at 25–30 individuals sampled per site.

To our knowledge, our study is the first to compare sensitivity of

network-based cGD to unsampled and under-sampled sites.

Finally, we used permutations to test the statistical significance

of Mantel r values. The full datasets showed significant isolation by

distance, therefore we expected that if unsampled or under-

sampled sites had no effect on the overall conclusions drawn from

landscape genetic analyses, we would also find significant isolation

by distance when we did not include all sites or all individuals in

our cGD estimate. Overall, we found that unsampled and under-

sampled sites did not affect our conclusions about isolation by

distance, with the exception of 21% of the iterations simulating

unsampled sites with the marten dataset. Despite the sensitivity of

Mantel r values, unsampled or under-sampled sites might not

cause landscape geneticists to draw incorrect conclusions about the

Figure 4. The effect of under-sampled sites on genetic distance estimates. We represented the marten (Martes americana) dataset with
hollow symbols and the fisher (M. pennanti) dataset with filled symbols. We have presented values as the absolute relative error (%) between the
mean pairwise genetic distance estimate at each iteration and the genetic distance estimate for the full dataset (‘true’ measure). Each iteration
represents the addition of one individual to each site, such that in a, c, e, and g, the individuals added have common genotypes, and in b, d, f, and h,
individuals added have rare genotypes (according to scores on the first principal component).
doi:10.1371/journal.pone.0056204.g004
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processes driving gene flow in their studies. Users of cGD in a

landscape genetic context should use caution, however, when their

data have minimal genetic structure. The Mantel r values for the

full datasets in our study were relatively large (0.355 and 0.586 for

marten and fisher datasets, respectively). It is possible that the

statistical significance of Mantel r will be more sensitive to

unsampled and under-sampled sites for variables that correlate less

well with genetic distance (i.e., smaller Mantel r for the full

dataset). This, as well as the sensitivity of partial Mantel tests,

should be addressed with future work [28]. Future work should

also address the sensitivity of Mantel permutation tests to discern

between significant patterns and random patterns [47].

Our study design allowed us to examine a number of variables

with a range of values, making our results applicable to many

landscape genetic studies using cGD. We considered clustered

(fisher, K = 5) and unclustered (marten, K = 1) datasets, and we

found that our marten dataset was more sensitive than the fisher

dataset to the effects of both unsampled and under-sampled sites.

Considering both clustered and unclustered datasets meant that

we were considering a range of values when we looked at the effect

of whether the unsampled sites were the most or least connected

sites, or when the under-sampled sites were missing individuals

with common or rare genotypes. We found that if unsampled sites

were highly connected, Mantel r values were more sensitive than if

unsampled sites were less connected, but this sensitivity is not

strong enough to influence the conclusions drawn from statistical

tests of isolation by distance. We found no difference between

whether under-sampled sites were missing individuals with

common or rare genotypes on the sensitivity of cGD or Mantel r.

Our results should be applicable to other landscape genetic studies

with less than 5 genetic clusters.

The fact that cGD is sensitive to unsampled and under-sampled

sites is not surprising given that the metric is based on the relative

covariance of the entire network. This sensitivity is not necessarily

a negative trait, especially given that it does not, at least in our

study, greatly affect the conclusions drawn from landscape genetic

analyses. The effects of unsampled sites on landscape genetic

analyses are difficult to study because we often use pairwise metrics

of genetic differentiation, such as FST or Dest, that consider only the

pair of sites in question. These pairwise metrics are not influenced

by other sites, sampled or not, even if those other sites are having a

marked influence on gene flow in the system. Pairwise estimates of

cGD, on the other hand, are sensitive to other sites, and this

sensitivity means that as more sites are sampled, the accuracy of

Table 3. The difference in mean absolute relative error (%)
between genetic distance estimators for under-sampled sites.

Comparison Dataset1 Units added2 P-value3 Cohen’s d4

cGD vs. deucl Marten Common 0.006 1.127

Rare 0.013 1.023

Fisher Common 0.004 0.927

Rare ,0.001 1.153

cGD vs. Dest Marten Common 0.120 0.677

Rare 0.317 0.403

Fisher Common 0.019 0.823

Rare 0.324 0.357

cGD vs. FST Marten Common 0.025 0.938

Rare 0.002 1.178

Fisher Common 0.048 0.688

Rare 0.031 0.783

Dest vs. deucl Marten Common 0.016 0.871

Rare 0.007 1.206

Fisher Common 0.135 0.388

Rare ,0.001 1.419

FST vs. deucl Marten Common 0.199 0.510

Rare 0.468 20.289

Fisher Common 0.062 0.554

Rare ,0.001 1.270

Dest vs. FST Marten Common 0.148 0.467

Rare ,0.001 1.671

Fisher Common 0.517 20.233

Rare 0.061 0.691

1Marten data are not genetically clustered (K = 1); fisher data are genetically
clustered (K = 5)
2The sites that we added back into the analysis were either the least or the most
connected (according to eigenvector centrality estimates). The individuals that
we added to each site had either common or rare genotypes (according to
scores on the first principal component)
3Comparisons that are significantly different are in bold font at a= 0.05 based
on permutation tests
4Cohen’s [38] effect size, where d = 0.2 is a small effect, d = 0.5 is a medium
effect, and d = 0.8 is a large effect (large effects are in bold font)
doi:10.1371/journal.pone.0056204.t003

Figure 5. The effect of unsampled sites on the rank-order of cGD as measured by Spearman’s r. Higher values of r indicate fewer
deviations in the rank order of cGD compared between each iteration and the true cGD. Each iteration represents the addition of one site to the
analysis; hollow symbols represent the addition of the least connect sites and filled symbols represent the addition of the most connected sites.
doi:10.1371/journal.pone.0056204.g005
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cGD estimates increases and better reflects true gene flow. We

showed this with our simulation (Figs 2, 9), where we knew that

gene flow was governed by isolation by resistance. As we increased

the number of sites that we sampled, the accuracy of our estimates

of isolation by resistance improved. Because pairwise estimates

such as FST and Dest are insensitive to the contribution to gene flow

of other sites, the accuracy of these estimates cannot improve as

sampling effort is increased. Thus, the sensitivity of cGD explains

why it has the potential to be a powerful estimate of genetic

distance [18].

The bottom line is whether cGD is too sensitive to unsampled

and under-sampled sites to be a reliable estimate of genetic

differentiation, especially given that few studies can claim to have

sampled all sites that contribute to gene flow in their study system.

It is our opinion that the pros (greater power to detect landscape

genetic relationships, as per Dyer et al. [18]) outweigh the cons

(the potential to draw incorrect conclusions from landscape genetic

analyses), but users of cGD need to weigh the pros and cons for

their own study systems.

We agree with Naujokaitis-Lewis et al. [28] that landscape

geneticists should investigate sensitivity within their networks,

Figure 6. The effect of under-sampled sites on the rank-order of cGD as measured by Spearman’s r. Higher values of r indicate fewer
deviations in the rank order of cGD compared between each iteration and the true cGD. Each iteration represents the addition of one individual to
each site; hollow symbols represent the addition of individuals with common genotypes and filled symbols represent the addition of individuals with
rare genotypes.
doi:10.1371/journal.pone.0056204.g006

Figure 7. The effect of unsampled sites on Mantel r statistics testing isolation by distance. Each iteration represents the addition of one
site to the network, such that sites are the least connected (panels a and b) or the most connected (panels c and d), for both the marten (Martes
americana) and fisher (M. pennanti) datasets. The dashed line is the Mantel r (95% CI) statistic for the full dataset. Isolation by distance is the
relationship between cGD and log Euclidean distance.
doi:10.1371/journal.pone.0056204.g007
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Figure 8. The effect of under-sampled sites on Mantel r statistics testing isolation by distance. Each iteration represents the addition of
one individual to each site in the network, such that individuals have common genotypes (panels a and b) or rare genotypes (panels c and d), for
both the marten (Martes americana) and fisher (M. pennanti) datasets. The dashed line is the Mantel r (95% CI) statistic for the full dataset. Isolation by
distance is the relationship between cGD and log Euclidean distance.
doi:10.1371/journal.pone.0056204.g008

Figure 9. Mean (SE) Mantel r values across 21 replicates of simulated isolation by resistance. Mantel r values are based on conditional
genetic distance (cGD) and the cost distance (log-transformed) between 6 pairs of sites. We calculated Mantel r values based on four estimates of
cGD: when all nine sites were included in the network (0 unsampled populations), when 1 site (site 5) was not included in the network, when 2 sites
(sites 4 and 5) were not included in the network, and when 3 sites (sites 4, 5, and 6) were not included in the network. We included only the 6 core
sites (sites 1, 2, 3, 7, 8, and 9; see Figure 2) in all calculations of Mantel r.
doi:10.1371/journal.pone.0056204.g009
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recognizing that it is difficult to extrapolate within-network

sensitivity to sites that were not sampled and for which we do

not know the genotypes of individuals at those unsampled sites. A

jackknifing procedure, where a random subset of the sites are

included in the estimate of cGD, could be used in practice to

estimate the variance of cGD due to unsampled sites. Conclusions

about the effect of the landscape on differentiation derived from a

genetic network should be extrapolated to areas and populations

beyond the empirical network only with caution. We propose that

cGD is appropriate for hypothesis testing in landscape genetics

because the sensitivity of the estimate can result in more accurate

conclusions. We do not know how accurately cGD predicts the

relationship between genetic and landscape connectivity beyond

the study area because estimates of cGD are conditional on which

sites are included in the network. Subsequent, generalized

hypotheses should only be extrapolated to a larger area with

intentions of further validation. We suggest that users of cGD use

caution when their study systems approach panmixia and, in

general, should use cGD in conjunction with other pairwise

measures of genetic distance [48–50]. Future work should

investigate methods to mitigate the impacts of unsampled and

under-sampled sites on landscape genetic analyses [13,51–53].
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