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Abstract

Background: Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on
the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating
artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we characterize the
effects of artificial boundaries on calculations of landscape resistance to movement using circuit theory. We then propose
and test a solution to artificially inflated resistance values whereby we place a buffer around the artificial boundary as a
substitute for the true, but unknown, habitat.

Methodology/Principal Findings: We randomly assigned landscape resistance values to map cells in the buffer in
proportion to their occurrence in the known map area. We used circuit theory to estimate landscape resistance to organism
movement and gene flow, and compared the output across several scenarios: a habitat-quality map with artificial
boundaries and no buffer, a map with a buffer composed of randomized habitat quality data, and a map with a buffer
composed of the true habitat quality data. We tested the sensitivity of the randomized buffer to the possibility that the
composition of the real but unknown buffer is biased toward high or low quality. We found that artificial boundaries result
in an overestimate of landscape resistance.

Conclusions/Significance: Artificial map boundaries overestimate resistance values. We recommend the use of a buffer
composed of randomized habitat data as a solution to this problem. We found that resistance estimated using the
randomized buffer did not differ from estimates using the real data, even when the composition of the real data was varied.
Our results may be relevant to those interested in employing Circuitscape software in landscape connectivity and landscape
genetics studies.
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Introduction

Modeling habitat connectivity is integral to conservation

planning [1,2], as habitat corridors may act as conduits for

organism movement and gene flow [e.g., 3–5]. The identification

of functional corridors requires first mapping the permeability of

the landscape to movement by the species of interest, and then

modeling the organism’s path of movement across the map.

Recently developed connectivity models have moved beyond

predicting single least cost paths to estimating multiple movement

pathways [2,6–9] and landscape resistance to movement [10,11].

The nature of connectivity studies often requires that they occur at

large spatial scales [e.g., 12,13]. As a result, many studies use

remotely-sensed land-cover maps to represent the true landscape.

Artificial boundaries of a map, boundaries that exist on the land-

cover map but not on the ground, will arise in studies that span

large areas where compatible remotely-sensed land-cover data

might not exist for the entire region of interest. For example, in

Ontario, Canada, detailed forest resource inventory (FRI) data

exist only for commercially managed forests, even though forest

exists beyond the inventoried area (Figure 1). Studies that span

political jurisdictions may be particularly prone to having artificial

boundaries, as comparable land-cover data may not be available

on both sides of the political border. Likewise, researchers may be

limited in map extent because of computational limitations of

modeling software. We were interested in characterizing the effects

of artificial map boundaries on calculations of landscape resistance

to movement, and testing a possible solution for biased resistance

values.

One promising modeling approach incorporates concepts from

electrical circuit theory to model landscape permeability to both

gene flow and individual movements [11,14]. Rather than

predicting specific, set movement pathways, circuit theory

attempts to quantify the overall resistance of the landscape to

organism movement. Resistance values that reflect the hypothe-

sized ease of movement of individuals are assigned to raster map

cells (nodes), creating a conductive surface. Exploiting the

properties of random walks on electrical networks, effective
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landscape resistance can then be calculated between pairs of nodes

based upon the commute times of random walkers; the expected

length of a random walk to a node and back. Effective resistance

on a landscape is a measure of isolation between cells on a raster

grid. The result is a continuous surface of resistance estimates that

incorporates all potential movement pathways into the measure of

resistance. As this model is still in its infancy, we know little about

how the results are affected by idiosyncrasies of the input data.

One of the reasons circuit theory is appealing as a model of gene

flow and individual movement is that the incorporation of random

walkers on networks to estimate landscape resistance allows

resistance to decrease with increasing connectivity, path width,

and path redundancy [11,14]. This feature, however, leads to a

potential problem; artificial boundaries may act as barriers to

dispersal for the model organisms (random walkers) when, in

reality, habitat beyond the boundary is available for use by real

organisms. This could artificially decrease the number of paths

connecting a landscape and increase perceived resistance and

isolation of that landscape. This introduces a bias if researchers

intend to compare the relative connectedness of the landscape

between several sites. Those sites close to the map boundary may

appear less connected than interior sites, when in fact this might be

an artifact of the map boundary. If map extent was increased,

random walkers would have more ‘room to run’, which would

increase perceived connectivity between sites close to the map

boundary. Several authors have alluded to the idea that artificial

boundaries might influence the results of least cost path and

landscape resistance models [2,11,15–18], but to our knowledge,

no one has directly addressed the issue.

If model organisms (random walkers) of circuit theory are

constrained by map boundaries, we predict that: 1) landscape

resistance will be overestimated when the map has artificial

boundaries within reach of random walkers; and 2) the addition of

a buffer of habitat data around the artificial boundary will provide

a more accurate resistance estimate. We created a buffer that was

an extrapolation of the known habitat composition within the map

(hereafter termed randomized buffer); habitat quality values were

randomly assigned to map pixels in the buffer, in the same

proportion as the map. We modeled landscape resistance to

animal movement using circuit theory [11,19], and compared the

output from maps with artificial boundaries, maps with a

randomized buffer, and maps with a buffer of true landscape

data. We addressed the sensitivity of the randomized buffer by

biasing the real buffer data toward both high and low habitat

quality.

Methods

We simulated a common scenario whereby a researcher wants

to predict gene flow of a species between several sites of interest

using a map representing the cost of movement for the species.

Given the relatively large spatial scale of these types of studies,

artificial boundaries might be produced due to the lack of available

land-cover data (e.g., Figure 1). Some sites might be closer to the

Figure 1. A map of Ontario, Canada. Dark grey depicts where
detailed land-cover data exist in the province (forest resource inventory
[FRI]). The boundaries of the dark grey area are ‘‘artificial’’ (except where
bounded by water [light grey]), in that these boundaries exist because
of a lack of data outside of the dark grey area; on the ground, habitat
continues beyond these edges (white area). The inset map shows
Wabakimi Provincial Park in Ontario (black outline), where we do not
have FRI data but we know that the area contains suitable habitat.
Models of gene flow across this region would attribute unrealistically
high resistance to the habitat between the lake and the Park, while real
organisms on the ground would be able to traverse the Park and
surrounding habitat. Outlines of the 5 plots are shown.
doi:10.1371/journal.pone.0011785.g001

Figure 2. Dimensions of the plots. The core area includes both the
outer core (grey) and the inner core (white).
doi:10.1371/journal.pone.0011785.g002
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edge of the map than others. We used circuit theory [11,14] to

model the landscape’s resistance to organism movement with the

software CIRCUITSCAPE 3.5 [19]. We use the term resistance as

a synonym of effective resistance and as an antonym of landscape

connectivity. The term current is defined as the density of random

walkers between two sites, and is negatively correlated with

resistance (although it is not the inverse).

We demonstrated the effect of artificial boundaries on estimates

of landscape resistance with an existing land-cover map (FRI data)

of Ontario, Canada (Figure 1). We reclassified this map to

Figure 3. An example of one plot, showing the composition of suitable habitat for each scenario. a) a plot with habitat quality data in
the core only (artificial boundary); b) a buffer around the core area composed of the true habitat quality data; c) a buffer composed of randomized
habitat quality data; d) a buffer composed of true data that is biased toward low-quality; and e) a buffer composed of true data that is biased toward
high-quality. Map pixels were 250-m by 250-m and all buffers were 25-km wide.
doi:10.1371/journal.pone.0011785.g003
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represent the cost of movement by American martens (Martes

americana), with a scale ranging from l (low) to 3 (high quality

habitat). Habitat quality for martens was assessed from FRI using

established habitat suitability models [e.g., 20]. The species of

interest and area of study that we used for our simulation is

irrelevant however, as we did not expect the outcome to be either

species or landscape specific.

Our study took place in 5 replicate 10,000-km2 plots (Figure 1).

Our raster habitat map had a pixel size of 0.0625 km2

(n = 160,000 pixels per plot). Each plot consisted of a core area

(2,500 km2) and a buffer (25-km wide) around the core (Figure 2).

We divided the core area into an inner and outer core (Figure 2)

because we were interested in comparing the effect of map

boundaries on sites located close to the map boundary (outer core)

to central sites (inner core). We estimated resistance between a

source site randomly located within the core area (either inner or

outer), and a destination site located 10 km from the source, in a

random direction. We estimated landscape resistance between 10

randomly selected site pairs in each of the inner and outer cores,

for each of the 5 plots (n = 100 pairs).

We assessed landscape resistance in multiple scenarios

(Figure 3). The first scenario (no buffer) was a map with artificial

boundaries (i.e., core area only), where we did not know the

habitat composition on the ground beyond those boundaries

(Figure 3a). The second scenario (real buffer) was a map of the

core area plus a 25-km wide buffer composed of true landscape

data as portrayed on the map (Figure 3b). It was meant to

represent the true habitat on the ground beyond the map

boundaries, and that which was unknown in the first scenario.

The third scenario (randomized buffer) was a map of the core

area plus a 25-km wide buffer composed of randomized habitat

data (Figure 3c). This buffer was a substitute for the true data in

scenario 2 (assuming the true data were unknown). We generated

the randomized buffer by randomly assigning a habitat quality

value between 1 and 3 to each grid cell in the buffer. The

proportion of each value in the buffer was the same as the core

area, as we wanted to emulate the situation where a researcher

does not know the habitat composition beyond the boundaries of

the map and the only land-cover information available is within

the core area. Thus, the researcher could extrapolate beyond the

map boundary.

Given the idiosyncrasies of the Ontario landscape, the

proportion of each habitat quality value in the randomized buffer

was similar to the proportion in the real buffer (Table 1). This ideal

situation may not be generally applicable. Thus, we investigated

the sensitivity of our randomized buffer to situations where the

true landscape in the real buffer was less suitable (scenario 4, low

buffer) or more suitable (scenario 5, high buffer) than the core. We

generated these buffers by reclassifying the buffer from scenario 2

(real buffer) as follows: (1) we biased the buffer toward low quality

by changing the pixels representing medium quality in the buffer

to low quality (Figure 3d); and (2) we biased the buffer toward high

quality by changing the medium quality pixels in the buffer to high

quality (Figure 3e). We did not change the composition of the core

area. The mean proportion of low-quality pixels across the 5 plots

increased by 68% (SD = 73) between the real and low-biased

buffers, whereas the mean proportion of high- quality pixels

increased by an average of 206% (SD = 115) between the real and

high-biased buffers (Table 1).

We compared resistance, estimated using Circuitscape, between

the five scenarios with Cohen’s effect size (d) for paired

comparisons (the difference between group means, divided by

the pooled standard deviation; [21]). We pooled data over plots

(n = 50). We interpreted effect size using Cohen’s [21] general

guidelines, whereby d = 0.2 is a small effect, d = 0.5 is a medium

effect, and d = 0.8 is a large effect. Because our study is based on

simulated data, we used effect size to assess differences between

scenarios rather than test statistics; when using test statistics, a

sufficiently large sample size will always suggest statistically

significant differences.

Results

Resistance was overestimated in the scenario with no buffer

relative to the buffer of real data (Figures 4–5) for sites in both the

inner (d = 1.50) and outer (d = 0.90) cores, as indicated by large

effect sizes (Table 2). When we used the randomized buffer

however, resistance estimates were not different than estimates

using a buffer of real data for sites in either the inner (d = 0.13) or

outer (d = 0.002) cores, as indicated by small effect sizes (Table 2).

Resistance was again overestimated for the scenario with no

buffer relative to the buffer biased towards low quality for sites in

both the inner (d = 0.75) and outer (d = 0.84) cores (Table 2).

Conversely, when we used the randomized buffer, effect sizes

were small; resistance did not differ from the buffer with low-

biased data for sites in the inner (d = 0.28) or outer (d = 0.37) cores

(Table 2).

We found that the scenario with no buffer overestimated

resistance relative to when we biased the real buffer toward high

habitat quality, for both the inner (d = 0.90) and outer (d = 0.90)

cores (Table 2). We found no difference in resistance however,

between scenarios with a buffer of randomized data and a buffer

biased towards high quality, for sites in both the inner (d = 0.15)

and outer (d = 0.23) cores, as indicated by small effect sizes

(Table 2).

Table 1. The percentage of map pixels scored as low,
medium, or high habitat quality1.

Plot Scenario Low Medium High

1 Real buffer 78 9 13

Low quality 85 2 13

Randomized buffer 79 7 14

High quality 78 2 20

2 Real buffer 24 61 15

Low quality 70 15 15

Randomized buffer 25 60 15

High quality 24 15 61

3 Real buffer 61 30 9

Low quality 82 9 9

Randomized buffer 59 35 6

High quality 61 9 30

4 Real buffer 56 28 16

Low quality 77 8 16

Randomized buffer 51 31 18

High quality 56 8 36

5 Real buffer 46 44 10

Low quality 76 14 10

Randomized buffer 35 56 9

High quality 46 14 40

1Values are a sum of the core area and the buffer, for each plot depicted in
Figure 1.

doi:10.1371/journal.pone.0011785.t001
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Discussion

Artificial boundaries on maps biased landscape resistance

estimated with circuit theory. As predicted, resistance was

overestimated on maps with artificial boundaries, and the

addition of a buffer removed the bias. This is because artificial

boundaries limit the space available to random walkers, which

artificially reduces the number of paths to each node, thus

increasing perceived resistance. A buffer around the artificial

boundary removed the barrier to movement and produced a

more accurate estimate of resistance. Even if the true habitat

composition in the buffer was different than the core (i.e., biased

Figure 4. An example of the current between two randomly selected sites in the interior core. a) a plot with habitat data for the core only
(artificial boundary); b) a buffer around the core area composed of the true habitat data; c) a buffer composed of randomized habitat data; d) a buffer
composed of true data that is biased toward low quality; and e) a buffer composed of true data that is biased toward high quality. Estimates of
current were generated using Circuitscape software [19] for the landscape depicted in Figure 3.
doi:10.1371/journal.pone.0011785.g004
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toward low or high quality), using a randomized buffer that was

proportional to the composition of the core introduced less bias

than not using a buffer. This was true for resistance estimates at

sites close to the map boundary, as well as for centrally-located

sites.

Our results are based on a relatively simple plot design; one with

a direct path between two sites and no barriers or narrow habitat

passages. We suspect that artificial boundaries will have a greater

effect in more complex landscapes. For example, in Ontario the

lack of FRI data for Wabakimi Provincial Park (Figure 1 inset)

creates a narrow corridor of available habitat for which

Circuitscape would attribute unrealistically high resistance. A

buffer would allow model organisms to move through the Park

and would, therefore, better model reality.

Figure 5. An example of the current between two randomly selected sites in the outer core. a) a plot with habitat data in the core only
(artificial boundary); b) a buffer around the core area composed of the true habitat data; c) a buffer composed of randomized habitat data; d) a buffer
composed of true data that is biased toward low quality; and e) a buffer composed of true data that is biased toward high quality. Estimates of
current were generated using Circuitscape software [19] for the landscape depicted in Figure 3.
doi:10.1371/journal.pone.0011785.g005
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We recommend that a buffer be used when estimating

landscape resistance in studies that would otherwise be influenced

by map boundaries. This buffer need not be composed of map

pixels randomly assigned to a habitat class, as in our simulation;

the buffer could be based on satellite or other imagery if those data

are available. Our map represented the landscape’s permeability

to movement by marten. The habitat suitability models used to

build our map required information, such as the development

stage and canopy closure of the forest, that were available only

from FRI data. As such, the randomized buffer that we used was

more appropriate than a buffer based on satellite imagery because

we could not infer habitat suitability for martens otherwise. Users

will need to consider which buffer is appropriate for their unique

circumstance. The buffer width that will be sufficient to reduce

bias in resistance estimates will also be project-specific. For many

studies, habitat quality beyond the extent of the map is unknown,

making arbitrary the choice of buffer width and composition.

Computer memory limitations, resulting in the inability of

Circuitscape to compute grids larger than six million cells [22],

may ultimately restrict buffer width. Future work could build on

our finding of no difference in resistance with biased buffers and

address specifically the sensitivity of circuit theory to varying levels

of landscape connectivity.

Circuit theory is an appealing model because, rather than

modeling discrete paths that assume the disperser has prior

knowledge of the landscape, it uses random walkers to model an

overall resistance to movement. It is this theoretical strength,

however, that causes the bias introduced by artificial boundaries

on the map; map boundaries act as barriers to random walkers,

thus inflating resistance estimates. We do not expect that artificial

boundaries will affect the results of single-path least cost path

models in the same way. As the use of multiple-path models, such

as Circuitscape, becomes more widespread, users must address the

bias that artificial boundaries on the map might introduce. We

have presented a simple solution to the problem; a buffer that

removes the barrier caused by map edges.
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